Hardy inequalities with optimal constants and remainder terms ∗
نویسندگان
چکیده
We show that the classical Hardy inequalities with optimal constants in the Sobolev spaces W 1,p 0 and in higher-order Sobolev spaces on a bounded domain Ω ⊂ R can be refined by adding remainder terms which involve L norms. In the higher-order case further L norms with lower-order singular weights arise. The case 1 < p < 2 being more involved requires a different technique and is developed only in the space W 1,p 0 .
منابع مشابه
A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem
Based on properties of vector fields, we prove Hardy inequalities with remainder terms in the Heisenberg group and a compact embedding in weighted Sobolev spaces. The best constants in Hardy inequalities are determined. Then we discuss the existence of solutions for the nonlinear eigenvalue problems in the Heisenberg group with weights for the psub-Laplacian. The asymptotic behaviour, simplicit...
متن کاملOn Hardy inequalities with a remainder term
In this paper we study some improvements of the classical Hardy inequality. We add to the right hand side of the inequality a term which depends on some Lorentz norms of u or of its gradient and we find the best values of the constants for remaining terms. In both cases we show that the problem of finding the optimal value of the constant can be reduced to a spherically symmetric situation. Thi...
متن کاملExtremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities
We consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpo...
متن کاملImproved Poincaré inequalities
Although the Hardy inequality corresponding to one quadratic singularity, with optimal constant, does not admit any extremal function, it is well known that such a potential can be improved, in the sense that a positive term can be added to the quadratic singularity without violating the inequality, and even a whole asymptotic expansion can be build, with optimal constants for each term. This p...
متن کاملHardy type inequalities in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}$\end{document}Lp with sharp remainders
*Correspondence: [email protected] 2Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan Full list of author information is available at the end of the article Abstract Sharp remainder terms are explicitly given on the standard Hardy inequalities in Lp(Rn) with 1 < p < n. Those remainder terms provide a direct and exa...
متن کامل